Stable isotope constraints on the role of graphite in the genesis of unconformity-type uranium deposits
摘要:
The Key Lake unconformity-type uranium deposit occurs in a shear zone where it intersects the unconformity between Archean and Aphebian gneisses and the overlying Proterozoic Athabasca Group sandstones. The roots of the Key Lake and many other unconformity-type uranium deposits in the Athabasca basin are close to gneisses rich in graphite and most deposits have small amounts of carbonaceous materials (bitumen and hydrocarbon buttons) within and around altered basement and sandstone ore zones. In many Athabasca uranium deposits, hydrothermal fluids have destroyed graphite disseminated in the strongly altered gneisses in the vicinity of the deposits, prompting some to suggest that graphite was converted to CH4, which reduced and precipitated the uranium and partially condensed to form bitumen. The δ13C values of graphite collected from unaltered and altered gneisses around the Key Lake deposit have a limited range and are not a function of distance from the mineralization or the intensity of alteration or deformation. The uniformity of these δ13C values suggests that the destruction of graphite was due predominantly to oxidation by basinal fluids from the sandstone and that the graphite near the deposits did not react to form substantial amounts of 12C-rich phases such as CH4. Additional study results are discussed.
展开
DOI:
10.1139/e89-042
被引量:
年份:
1989
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!