Stability analysis of latent and active 72-kDa type IV collagenase: the role of tissue inhibitor of metalloproteinases-2 (TIMP-2).

来自 ACS

阅读量:

48

摘要:

The degradation of extracellular matrix is an important facet of many physiological and pathological processes. The collagenases form a family of matrix degradative enzymes that have similar active site sequences and activation mechanisms and are inhibited by a specific class of proteinase inhibitors referred to as tissue inhibitors of metalloproteinases. Regulation of enzyme activity is a complex process involving control at multiple levels: message transcription and translation, activation of latent proenzymes, inhibition of activity by specific inhibitors, and degradation of activated enzymes. We have examined the role of the proteinase inhibitor tissue inhibitor of metalloproteinases-2 (TIMP-2) on two of these processes: the autoactivation and autodegradation of the human 72-kDa type IV collagenase. We compared the stability of the enzyme in these two processes using three different enzyme preparations: the enzyme-inhibitor complex as isolated from human A2058 melanoma cells, recombinant enzyme free of TIMP-2, and enzyme separated from TIMP-2 by acid denaturation. We have found little evidence to support the hypothesis that the enzyme is able to autoactive, as no autoactivation occurs in the presence of TIMP-2 and only 20% autoactivation occurs in its absence, and then only after 24 h of incubation at 37 degrees C. However, TIMP-2 does appear to inhibit autodegradation, possibly by a mechanism distinct from its ability to inhibit substrate proteolysis. Enzyme isolated via chromatography involving acid mobile phases produces a mixture of cleavage products that is mostly denatured, inactive enzyme fragments. The role of TIMP-2 as an inhibitor of autodegradation suggests that the enzyme may show two physiological phenotypes: the free enzyme having a high level of activity and rapid autodegradation and enzyme-inhibitor complex having a low level of activity resistant to autodegradation.

展开

DOI:

10.1080/0141192960220307

被引量:

356

年份:

1993

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用