O2 deprivation inhibits Ca2+-activated K+ channels via cytosolic factors in mice neocortical neurons

阅读量:

44

作者:

H LiuE MoczydlowskiGG Haddad

展开

摘要:

O(2) deprivation induces membrane depolarization in mammalian central neurons. It is possible that this anoxia-induced depolarization is partly mediated by an inhibition of K(+) channels. We therefore performed experiments using patch-clamp techniques and dissociated neurons from mice neocortex. Three types of K(+) channels were observed in both cell-attached and inside-out configurations, but only one of them was sensitive to lack of O(2). This O(2)-sensitive K(+) channel was identified as a large-conductance Ca(2+)-activated K(+) channel (BK(Ca)), as it exhibited a large conductance of 210 pS under symmetrical K(+) (140 mM) conditions, a strong voltage-dependence of activation, and a marked sensitivity to Ca(2+). A low-O(2) medium (PO(2) = 10-20 mmHg) markedly inhibited this BK(Ca) channel open probability in a voltage-dependent manner in cell-attached patches, but not in inside-out patches, indicating that the effect of O(2) deprivation on BK(Ca) channels of mice neocortical neurons was mediated via cytosol-dependent processes. Lowering intracellular pH (pH(i)), or cytosolic addition of the catalytic subunit of a cAMP-dependent protein kinase A in the presence of Mg-ATP, caused a decrease in BK(Ca) channel activity by reducing the sensitivity of this channel to Ca(2+). In contrast, the reducing agents glutathione and DTT increased single BK(Ca) channel open probability without affecting unitary conductance. We suggest that in neocortical neurons, (a) BK(Ca) is modulated by O(2) deprivation via cytosolic factors and cytosol-dependent processes, and (b) the reduction in channel activity during hypoxia is likely due to reduced Ca(2+) sensitivity resulting from cytosolic alternations such as in pH(i) and phosphorylation. Because of their large conductance and prevalence in the neocortex, BK(Ca) channels may be considered as a target for pharmacological intervention in conditions of acute anoxia or ischemia.

展开

DOI:

10.1172/JCI7291

被引量:

241

年份:

1999

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2002
被引量:25

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用