Variational quantum approaches for computing vibrational energies of polyatomic molecules

阅读量:

17

作者:

JM BowmanHD Meyer

展开

摘要:

In this article, we review state-of-the-art methods for computing vibrational energies of polyatomic molecules using quantum mechanical, variationally-based approaches. We illustrate the power of those methods by presenting applications to molecules with more than four atoms. This demonstrates the great progress that has been made in this field in the last decade in dealing with the exponential scaling with the number of vibrational degrees of freedom. In this review we present three methods that effectively obviate this bottleneck. The first important idea is the n-mode representation of the Hamiltonian and notably the potential. The potential (and other functions) is represented as a sum of terms that depend on a subset of the coordinates. This makes it possible to compute matrix elements, form a Hamiltonian matrix, and compute its eigenvalues and eigenfunctions. Another approach takes advantage of this multimode representation and represents the terms as a sum of products. It then exploits the powerful multiconfiguration Hartree time-dependent method to solve the time-dependent Schrödinger equation and extract the eigenvalue spectrum. The third approach we present uses contracted basis functions in conjunction with a Lanczos eigensolver. Matrix vector products are done without transforming to a direct-product grid. The usefulness of these methods is demonstrated for several example molecules, e.g. methane, methanol and the Zundel cation.

展开

DOI:

10.1080/00268970802258609

被引量:

217

年份:

2008

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用