Magnetic field induced by elliptical instability in a rotating spheroid

阅读量:

41

作者:

L LacazeW HerremanML BarsSL DizèsPL Gal

展开

摘要:

The tidal or the elliptical instability of the rotating fluid flows is generated by the resonant interaction of the inertial waves. In a slightly elliptically deformed rotating sphere, the most unstable linear mode is called the spin-over mode, and is a solid body rotation versus an axis aligned with the maximum strain direction. In the non-viscous case, this instability corresponds to the median moment of the inertial instability of the solid rotating bodies. This analogy is furthermore illustrated by an elliptical top experiment, which shows the expected inviscid heteroclinic behaviour. In geophysics, the elliptical instability may appear in the molten liquid cores of the rotating planets, which are slightly deformed by the tidal gravitational effects of the close bodies. It may then participate in the general outer core dynamics and possibly the geodynamo process. In this context, Kerswell and Malkus (Kerswell, R.R. and Malkus, W.V.R., Tidal instability as the source for Io's magnetic signature. Geophys. Res. Lett., 1998, 25, 603–606) showed that the puzzling magnetic field of the Jovian satellite Io may indeed be induced by the elliptically unstable motions of its liquid core that deflect the Jupiter's magnetic field. Our magnetohydrodynamics (MHD) experiment is a toy-experiment of this geophysical situation and demonstrates for the first time the possibility of an induction of a magnetic field by the flow motions due to the elliptical instability. A full analytical calculation of the magnetic dipole induced by the spin-over is presented. Finally, exponential growths of this induced magnetic field in a slightly deformed rotating sphere filled with galinstan liquid metal are measured for different rotating rates. Their growth rates compare well with the theoretical predictions in the limit of a vanishing Lorentz force.

展开

DOI:

10.1080/03091920600664695

被引量:

73

年份:

2006

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

Geophysical Fluid Dynamics
August–October 2006

引用走势

2010
被引量:13

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用