The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake.
摘要:
Reduced food intake brings about an adaptive decrease in energy expenditure that contributes to the recidivism of obesity after weight loss. Insulin and leptin inhibit food intake through actions in the central nervous system that are partly mediated by the transcription factor FoxO1. We show that FoxO1 ablation in pro-opiomelanocortin (Pomc)-expressing neurons in mice (here called Pomc-Foxo1(-/-) mice) increases Carboxypeptidase E (Cpe) expression, resulting in selective increases of alpha-melanocyte-stimulating hormone (alpha-Msh) and carboxy-cleaved beta-endorphin, the products of Cpe-dependent processing of Pomc. This neuropeptide profile is associated with decreased food intake and normal energy expenditure in Pomc-Foxo1(-/-) mice. We show that Cpe expression is downregulated by diet-induced obesity and that FoxO1 deletion offsets the decrease, protecting against weight gain. Moreover, moderate Cpe overexpression in the arcuate nucleus phenocopies features of the FoxO1 mutation. The dissociation of food intake from energy expenditure in Pomc-Foxo1(-/-) mice represents a model for therapeutic intervention in obesity and raises the possibility of targeting Cpe to develop weight loss medications.
展开
关键词:
animal experiments animal models diet disease models food intake food-related disorders genes human diseases hypothalamus laboratory animals
DOI:
10.1055/s-2006-939677
被引量:
年份:
2009



































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!