Prediction of Breast Cancer Survival Through Knowledge Discovery in Databases

阅读量:

64

作者:

LA HadiA MaryamR MasoudS Farahnaz

展开

摘要:

The collection of large volumes of medical data has offered an opportunity to develop prediction models for survival by the medical research community. Medical researchers who seek to discover and extract hidden patterns and relationships among large number of variables use knowledge discovery in databases (KDD) to predict the outcome of a disease. The study was conducted to develop predictive models and discover relationships between certain predictor variables and survival in the context of breast cancer. This study is Cross sectional. After data preparation, data of 22,763 female patients, mean age 59.4 years, stored in the Surveillance Epidemiology and End Results (SEER) breast cancer dataset were analyzed anonymously. IBM SPSS Statistics 16, Access 2003 and Excel 2003 were used in the data preparation and IBM SPSS Modeler 14.2 was used in the model design. Support Vector Machine (SVM) model outperformed other models in the prediction of breast cancer survival. Analysis showed SVM model detected ten important predictor variables contributing mostly to prediction of breast cancer survival. Among important variables, behavior of tumor as the most important variable and stage of malignancy as the least important variable were identified. In current study, applying of the knowledge discovery method in the breast cancer dataset predicted the survival condition of breast cancer patients with high confidence and identified the most important variables participating in breast cancer survival.

展开

DOI:

10.5539/gjhs.v7n4p392

被引量:

8

年份:

2015

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

研究点推荐

引用走势

2016
被引量:5

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用