Regulation of dopamine- and adenosine-dependent adenylate cyclase systems of chicken embryo retina cells in culture.

阅读量:

27

摘要:

We have obtained evidence that receptor-stimulated adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] is regulated physiologically in both embryonic and mature neurons. In a series of experiments using cultured retina cells from chicken embryos, we found that dopamine-sensitive adenylate cyclase activity spontaneously desensitized as cultures differentiated. The cellular response to dopamine reached a maximum after 5 days in culture and then decreased to 40% during the next 5 days. This spontaneous desensitization appeared to be caused by functional dopaminergic transmission because it could be blocked by the dopamine antagonist haloperidol. The ability of added dopamine at 100 μ M to cause near-complete desensitization is consistent with this conclusion. Pharmacologically induced desensitization required 31 hr for maximal effect and was half-maximal at 1-10 μ M dopamine. Analogous desensitization of the adenosine-dependent adenylate cyclase system also was noted. When dopamine was removed from the medium of chronically treated cultures, cells resensitized to subsequent stimulation at a very slow rate. Resensitization likely depended on replacement of dopamine receptors because chronic dopamine treatment caused the disappearance of binding sites for the ligand [3H]spiroperidol. In a second series of experiments, using hatched animals, we found that similar regulation of dopamine receptor binding sites and activity could be elicited by manipulation of environmental light, a treatment thought to influence dopaminergic transmission. Retinas from animals in constant light had less specific [3H]spiroperidol binding (35 fmol/mg of protein) than did retinas from animals in constant darkness (66 fmol/mg of protein) and made less cAMP in response to added dopamine. Our results indicate that regulation of the dopamine receptor system begins early in development and continues to function in mature synapses.

展开

DOI:

10.1073/pnas.79.18.5708

被引量:

67

年份:

1982

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用