Hydrodynamic cavitation: an advanced oxidation process for the degradation of bio-refractory pollutants.

作者:

RajoriyaSunilCarpenterJitendraSaharanVirendraKumarPanditAniruddhaB.

展开

摘要:

In recent years, water pollution has become a major problem for the environment and human health due to the industrial effluents discharged into the water bodies. Day by day, new molecules such as pesticides, dyes, and pharmaceutical drugs are being detected in the water bodies, which are bio-refractory to microorganisms. In the last two decades, scientists have tried different advanced oxidation processes (AOPs) such as Fenton, photocatalytic, hydrodynamic, acoustic cavitation processes, etc. to mineralize such complex molecules. Among these processes, hydrodynamic cavitation (HC) has emerged as a new energy-efficient technology for the treatment of various bio-refractory pollutants present in aqueous effluent. In this review, various geometrical and operating parameters of HC process have been discussed emphasizing the effect and importance of these parameters in the designing of HC reactor. The advantages of combining HC with other oxidants and AOPs such as H2O2, ozone, Fenton process, and photocatalytic process have been discussed with some recommendation for large-scale operation. It has been observed that the geometry of the HC device and other operating parameters such as operating pressure and cavitation number are the key design parameters that ultimately decide the efficacy and potentiality of HC in degrading bio-refractory pollutants on an industrial scale.

展开

DOI:

10.1515/revce-2015-0075

被引量:

25

年份:

2016

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2017
被引量:14

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用