Retinoic acid induces apoptosis of human CD34+ hematopoietic progenitor cells - an effective method for positive selection of CD34+ cells

阅读量:

39

作者:

D JosefsenHK BlomhoffJ LømoAK BlystadEB Smeland

展开

摘要:

Retinoids are bifunctional regulators of growth and differentiation of hematopoietic cells. In this study we explored the effects of retinoic acid (RA) on apoptosis of human CD34+ hematopoietic progenitor cells isolated from normal bone marrow. RA (100 nM) induced an increase in the percentage of dead cells from 24% to 44% at day 6 (p < 0.05, n = 6) as compared to control cells cultured in medium alone. The effect was dose dependent and appeared relatively late. Significant differences were observed from day 4 onward. Apoptosis, or programmed cell death, was demonstrated as the mode of cell death by using the TUNEL assay, which detects single strand nicks in DNA, or by the Nicoletti technique demonstrating a subdiploid population by DNA staining. RA previously was found to inhibit granulocyte colony-stimulating factor--and not granulocyte-macrophage colony-stimulating factor--stimulated proliferation of CD34+ cells. However, we found that RA opposed anti-apoptotic effects of G-CSF and GM-CSF on CD34+ cells (G-CSF: 8% dead cells at day 6; G-CSF + RA: 20%; GM-CSF: 12%; GM-CSF + RA: 27%). Moreover, RA induced apoptosis of CD34+ cells and CD34+CD71+ cells stimulated with erythropoietin. To explore the receptor signaling pathways involved in RA-induced apoptosis, we used selective ligands for retinoic acid receptors (RARs; RO13-7410) and retinoid X receptors (RXRs; RO 25-6603). We found that RARs were involved in RA-mediated apoptosis of myeloid progenitor cells, whereas RARs as well as RXRs were involved in RA-mediated apoptosis of erythroid progenitor cells.

展开

DOI:

10.1016/S0301-472X(98)00073-3

被引量:

118

年份:

1999

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用