Do cMOAT (MRP2), other MRP homologues, and LRP play a role in MDR?

阅读量:

54

作者:

P BorstM KoolR Evers

展开

摘要:

The discovery of the Multidrug Resistance-associated Protein (MRP or MRP1) as a GS-X pump able to transport both anionic drug conjugates and unmodified anti-cancer drugs out of the cell, has raised the question whether other members of the MRP family might contribute to drug resistance of human tumours. The most extensively studied member of this family is cMOAT, the canalicular Multispecific Organic Anion Transporter. The substrate specificity of this pump was originally defined by an inborn error in rats, lacking this protein. These rats are mildly hyperbilirubinemic, because of their inability to secrete bilirubin glucuronides into their bile. In addition, they have diminished capacity to secrete a variety of other organic anions. Absence of cMOAT in humans results in an analogous inborn error of metabolism, the Dubin-Johnson syndrome. Attempts to determine the effect of cMOAT on the sensitivity of cells to anti-cancer drugs have run into technical problems. Most cells transfected with a cMOAT cDNA construct and overproducing cMOAT seem unable to transport the protein to the cell surface and are not MDR. However, in polarized kidney cell monolayers cMOAT is correctly routed to the apical cell surface and able to transport vinblastine. Hence, overexpression of cMOAT in cancer cells could potentially lead to drug resistance. In studies of cells selected for drug resistance no correlation was found thus far between cMOAT overexpression and MDR, but there was a positive association with cisplatin resistance, raising the possibility that cMOAT might contribute to cisplatin resistance by mediating excretion of cisplatin-glutathione complexes. This remains to be verified by more direct experiments and clinical studies, however. Database searches have yielded four additional MRP family members, MRP3-6. The physiological functions of these putative transporters are not yet known and whether they can contribute to drug resistance needs to be determined. Another putative transporter found in many MDR cells not overproducing P-glycoprotein is the Lung Resistance Protein (LRP), which is the major vault protein. Scheper et al have detected LRP in many MDR cell lines and they have shown that elevated LRP values are a strong and independent predictor of unfavourable outcome for several types of drug-treated human tumours. LRP is a cytoplasmic protein and attempts to demonstrate its involvement in drug transport have failed thus far. The possibility that this protein is only an indicator of resistance caused by upregulation of other proteins, rather than a drug transporter, remains open.

展开

DOI:

10.1006/scbi.1997.0071

被引量:

211

年份:

1997

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

研究点推荐

引用走势

2000
被引量:32

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用