Silica gel formation during fault slip: Evidence from the rock record

作者:

JD KirkpatrickCD RoweJC WhiteEE Brodsky

展开

摘要:

Dynamic reduction of fault strength is a key process during earthquake rupture. Many mechanisms for causing coseismic weakening have been proposed based on theory and laboratory experiments, including silica gel lubrication. However, few have been observed in nature. Here we report on the first documented occurrence of a natural silica gel coating a fault surface. The Corona Heights fault slickenside in San Francisco, California, is covered by a shiny layer of translucent silica. Microstructures in this layer show flow banding, armored clasts, and extreme comminution compared to adjacent cataclasites. The layer is composed of similar to 100 nm to 1 mu m grains of quartz, hydrous crystalline silica, and amorphous silica, with 10-100 nm inclusions of Fe oxides and ellipsoidal silica colloids. Kinematic indicators and mixing with adjacent cataclasites suggest the shiny layer was fluid during fault slip. The layer therefore represents a relict silica gel that formed during fault motion, and which could have resulted in frictional instability. These observations confirm that the silica gels formed in rock friction experiments do occur in natural faults and therefore that silica gel formation can act as a dynamic weakening mechanism in faults at shallow crustal conditions.

展开

DOI:

10.1130/G34483.1

被引量:

70

年份:

2013

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用