Ketamine-Induced Neuronal Cell Death in the Perinatal Rhesus Monkey

来自 EBSCO

阅读量:

172

作者:

W SlikkerX ZouCE HotchkissRL DivineW Cheng

展开

摘要:

Ketamine is widely used as a pediatric anesthetic. Studies in developing rodents have indicated that ketamine-induced anesthesia results in brain cell death. Additional studies are needed to determine if ketamine anesthesia results in brain cell death in the nonhuman primate and if so, to begin to define the stage of development and the duration of ketamine anesthesia necessary to produce brain cell death. Rhesus monkeys (N = 3 for each treatment and control group) at three stages of development (122 days of gestation and 5 and 35 postnatal days [PNDs]) were administered ketamine intravenously for 24 h to maintain a surgical anesthetic plane, followed by a 6-h withdrawal period. Similar studies were performed in PND 5 animals with 3 h of ketamine anesthesia. Animals were subsequently perfused and brain tissue processed for analyses. Ketamine (24-h infusion) produced a significant increase in the number of caspase 3-, Fluoro-Jade C- and silver stain-positive cells in the cortex of gestational and PND 5 animals but not in PND 35 animals. Electron microscopy indicated typical nuclear condensation and fragmentation in some neuronal cells, and cell body swelling was observed in others indicating that ketamine-induced neuronal cell death is most likely both apoptotic and necrotic in nature. Ketamine increased N-methyl-D-aspartate (NMDA) receptor NR1 subunit messenger RNA in the frontal cortex where enhanced cell death was apparent. Earlier developmental stages (122 days of gestation and 5 PNDs) appear more sensitive to ketamine-induced neuronal cell death than later in development (35 PNDs). However, a shorter duration of ketamine anesthesia (3 h) did not result in neuronal cell death in the 5-day-old monkey.

展开

DOI:

10.1093/toxsci/kfm084

被引量:

1213

年份:

2007

相似文献

参考文献

引证文献

来源期刊

引用走势

2009
被引量:155

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用