Review: Soluble innate immune pattern-recognition proteins for clearing dying cells and cellular components: implications on exacerbating or resolving inflammation

阅读量:

42

作者:

ML LitvackN Palaniyar

展开

摘要:

Soluble innate immune pattern-recognition proteins (sPRPs) identify non-self or altered-self molecular patterns. Dying cells often display altered-self arrays of molecules on their surfaces. Hence, sPRPs are ideal for recognizing these cells and their components. Dying cell surfaces often contain, or allow the access to different lipids, intracellular glycoproteins and nucleic acids such as DNA at different stages of cell death. These are considered as 'eat me' signals that replace the native 'don't eat me' signals such as CD31, CD47 present on the live cells. A programmed cell death process such as apoptosis also generates cell surface blebs that contain intracellular components. These blebs are easily released for effective clearance or signalling. During late stages of cell death, soluble components are also released that act as 'find me' signal (e.g. LysoPC, nucleotides). The sPRPs such as collectins, ficolins, pentraxins, sCD14, MFG-E8, natural IgM and C1q can effectively identify some of these specific molecular patterns. The biological end-point is different depending on sPRP, tissue, stage of apoptosis and the type of cell death. The sPRPs that reside in the immune-privileged surfaces such as lungs often act as opsonins and enhance a silent clearance of dying cells and cellular material by macrophages and other phagocytic cells. Although the recognition of these materials by complement-activating proteins could amplify the opsonic signal, this pathway may aggravate inflammation. Clear understanding of the involvement of specific sPRPs in cell death and subsequent clearance of dying cell and their components is essential for devising appropriate treatment strategies for diseases involving infection, inflammation and auto-antibody generation.

展开

DOI:

10.1177/1753425910369271

被引量:

112

年份:

2010

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2011
被引量:30

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用