Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model

阅读量:

263

作者:

W ZhengZ WangL SongQ ZhaoJ ZhangD LiS WangJ HanXL ZhengZ Yang

展开

摘要:

To address the growing demand of small-diameter vascular grafts for cardiovascular disease, it is necessary to develop substitutes with bio-functionalities, such as anticoagulation, rapid endothelialization, and smooth muscle regeneration. In this study, the small-diameter tubular grafts (2.2mm) were fabricated by electrospinning of biodegradable polymer polycaprolactone (PCL) followed by functional surface coating with an arginine-glycine-aspartic acid (RGD)-containing molecule. The healing characteristics of the grafts were evaluated by implanting them in rabbit carotid arteries for 2 and 4 weeks. Results showed that at both time points, all 10 of the RGD-modified PCL grafts (PCL-RGD) were patent, whereas 4 of the 10 non-modified PCL grafts were occluded due to thrombus formation. Scanning electron microscopy (SEM) data showed abundant platelets adhering on the surface of the midportion of the PCL grafts. In contrast, only few platelets were observed on the PCL-RGD surface, suggesting that RGD modification significantly improved the hemocompatibility of the PCL grafts. Histological analysis demonstrated enhanced cell infiltration and homogeneous distribution within the PCL-RGD grafts in comparison with the PCL grafts. Furthermore, immunofluorescence staining also showed a 3-fold increase of endothelial coverage of the PCL-RGD grafts than that of PCL grafts at those two time points. After 4-week implantation, 65.3±7.6% of the surface area of the PCL-RGD grafts was covered by smooth muscle cell layer, which is almost 23% more than that on the PCL grafts. The present study indicates that RGD-modified PCL grafts exhibit an improved remodeling and integration capability in revascularization.

展开

DOI:

10.1016/j.biomaterials.2011.12.047

被引量:

236

年份:

2012

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用