Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides

阅读量:

609

作者:

JN ChhedaY Rom?N-LeshkovJA Dumesic

展开

摘要:

Furan derivatives, such as 5-hydroxymethylfurfural (HMF) and furfural, obtained from renewable biomass-derived carbohydrates have potential to be sustainable substitutes for petroleum-based building blocks used in production of fine chemicals and plastics. We have studied the production of HMF and furfural by dehydration of fructose, glucose and xylose using a biphasic reactor system, comprised of reactive aqueous phase modified with DMSO, combined with an organic extracting phase consisting of a 7 : 3 (w/w) MIBK–2-butanol mixture or dichloromethane (DCM). Experiments with the MIBK–2-butanol mixture were conducted at a temperature of 443 K using mineral acid catalysts (HCl, H2SO4and H3PO4) at a pH from 1.0 to 2.0, whereas experiments with DCM as the extracting solvent were conducted at 413 K and did not require the use of an acid catalyst. The modifiable nature of the biphasic system allowed us to identify preferred DMSO and pH levels for each sugar to maximize the HMF selectivity at high sugar conversions, leading to selectivities of 89%, 91%, and 53% for dehydration of fructose, xylose, and glucose, respectively. Using these reaction conditions for each monosaccharide unit, we can process the corresponding polysaccharides, such as sucrose (a disaccharide of glucose and fructose), inulin (a polyfructan), starch (a polyglucan), cellobiose (a glucose dimer) and xylan (a xylose polysaccharide), with equally good selectivities at high conversions. In addition, we show that the biphasic reactor system can process high feed concentrations (10 to 30 wt%) along with excellent recycling ability. By processing these highly functionalized polysaccharides, that are inexpensive and abundantly available, we eliminate the need to obtain simple carbohydrate molecules by acid hydrolysis as a separate processing step.

展开

DOI:

10.1039/b611568c

被引量:

997

年份:

2007

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2012
被引量:147

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用