Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol.

来自 EBSCO

阅读量:

68

作者:

TC KirkhamCM WilliamsF FezzaVD Marzo

展开

摘要:

Endocannabinoids are implicated in appetite and body weight regulation. In rodents, anandamide stimulates eating by actions at central CB1 receptors, and hypothalamic endocannabinoids may be under the negative control of leptin. However, changes to brain endocannabinoid levels in direct relation to feeding or changing nutritional status have not been investigated. We measured anandamide and 2-arachidonoyl glycerol (2-AG) levels in feeding-associated brain regions of rats, during fasting, feeding of a palatable food, or after satiation. Endocannabinoid levels were compared to those in rats fed ad libitum , at a point in their daily cycle when motivation to eat was absent. Fasting increased levels of anandamide and 2-AG in the limbic forebrain and, to a lesser extent, of 2-AG in the hypothalamus. By contrast, hypothalamic 2-AG declined as animals ate. No changes were detected in satiated rats. Endocannabinoid levels in the cerebellum, a control region not directly involved in the control of food intake, were unaffected by any manipulation. As 2-AG was most sensitive to variation during feeding, and to leptin regulation in a previous study, we examined the behavioural effects of 2-AG when injected into the nucleus accumbens shell, a limbic forebrain area strongly linked to eating motivation. 2-AG potently, and dose-dependently, stimulated feeding. This effect was attenuated by the CB1 receptor antagonist SR141716. These findings provide the first direct evidence of altered brain levels of endocannabinoids, and of 2-AG in particular, during fasting and feeding. The nature of these effects supports a role for endocannabinoids in the control of appetitive motivation. British Journal of Pharmacology (2002) 136 , 550557; doi: [DOI link]

展开

DOI:

10.1038/sj.bjp.0704767

被引量:

901

年份:

2010

相似文献

参考文献

引证文献

来源期刊

引用走势

2010
被引量:158

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用