Improved Risk Tail Bounds for On-Line Algorithms

作者:

N Cesa-BianchiC Gentile

展开

摘要:

Tight bounds are derived on the risk of models in the ensemble generated by incremental training of an arbitrary learning algorithm. The result is based on proof techniques that are remarkably different from the standard risk analysis based on uniform convergence arguments, and improves on previous bounds published by the same authors.

展开

DOI:

10.1109/TIT.2007.911292

被引量:

64

年份:

2008

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2013
被引量:15

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用