Reducing Bias in Observational Studies Using Subclassification on the Propensity Score
摘要:
The propensity score is the conditional probability of assignment to a particular treatment given a vector of observed covariates. Previous theoretical arguments have shown that subclassification on the propensity score will balance all observed covariates. Subclassification on an estimated propensity score is illustrated, using observational data on treatments for coronary artery disease. Five subclasses defined by the estimated propensity score are constructed that balance 74 covariates, and thereby provide estimates of treatment effects using direct adjustment. These subclasses are applied within sub-populations, and model-based adjustments are then used to provide estimates of treatment effects within these sub-populations. Two appendixes address theoretical issues related to the application: the effectiveness of subclassification on the propensity score in removing bias, and balancing properties of propensity scores with incomplete data.
展开
关键词:
Bias reduction Stratification Logistic models Log-linear models Direct adjustment Balancing scores
DOI:
10.1080/01621459.1984.10478078
被引量:
年份:
1984
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!