Resonant interaction of fast particles with Alfvén waves in spherical tokamaks

阅读量:

50

作者:

MK Lilley

展开

摘要:

The Spherical Tokamak (ST) concept has become one of the main avenues in magnetic nuclear fusion research since STs successfully demonstrated plasma operation at [Beta] = 2P[mu]0=B2~1. Next step ST machines aiming at achieving burning plasma conditions in high [Beta] plasmas are being planned, such as the Spherical Tokamak Power Plant (STPP) and the Component Testing Facility (CTF). Instabilities of fast particle-driven Alfven eigenmodes are often observed in present-day STs. Such instabilities, driven by fusion-born alpha particles as well as by fast ions produced with auxiliary heating schemes, in the next step STs may pose a major problem as these instabilities may affect confinement and losses of the fast ions. A theory of compressional Alfven eigenmodes (CAE) with frequencies above the deuterium cyclotron frequency,[omega] > [omega]cD, is developed for plasma parameters of a STPP, and modes in the ion-ion hybrid frequency range, [omega]cT < [omega] < [omega]cD, are also investigated in order to assess the potential of diagnosing the deuterium-tritium (D-T) ratio. For the 1-D character of a STPP equilibrium with [Beta]~1 , a `hollow cylinder' toroidal plasma model is employed for studying CAEs with arbitrary values of the parallel wave-vector k[||] = k[.]B/|B|. The existence of weakly-damped CAEs, free of mode conversion, is shown to be associated with the `well' in the magnetic field profile, B = B (R), that can exist at the magnetic axis. A significant part of this thesis focusses on the experimentally observed effects of resonant wave-particle interaction between Alfven waves and fast particles in the Mega Amp Spherical Tokamak (MAST) device at the Culham Laboratory, UK, and in the LArge Plasma Device (LAPD) in the University of California, Los-Angeles, USA. New robust experimental scenarios for exciting CAEs in the MAST spherical tokamak are developed, and interpretation of the observed CAEs in the frequency range [omega]cD/3 < [omega] < [omega]cD is given in the context of the 1-D ST model and the Doppler shifted cyclotron resonance. The e ciency of the Doppler resonance between co and counter directed fast ions and left and right hand polarised Alfven waves is further assessed experimentally on the LAPD device, with probe ions injected in the presence of Alfv en waves launched by an external antenna. The developed theory of CAEs is then applied to a calculation of the linear kinetic drive of CAEs in the MAST experiments. A model representation of the fast ion distribution function, produced by neutral beam injection (NBI), is used by fitting to the TRANSP Monte-Carlo NBI modelling results. The main free energy sources associated with temperature anisotropy and bump-on-tail are estimated analytically, and the CAE stability boundary is qualitatively assessed. In order to explain the experimentally observed difference between steady-state and pulsating Alfvenic modes, the non-linear theory of fast particle driven modes near marginal stability is extended to include dynamical friction (drag). For the bump-on-tail problem, the drag is shown to always give an explosive amplitude evolution in contrast to diffusion in velocity space in the vicinity of the wave-particle resonance. This is then extended to the case of experimentally observed NBI-driven toroidal Alfven eigenmodes (TAEs) in the MAST machine. The experimentally observed differences between TAEs driven by fast ions produced with ion cyclotron resonance heating (ICRH) and NBI are then interpreted. The problem of drag dominated collisions for modes excited by fusion-born alpha particles in burning plasmas such as a STPP and ITER is underlined.

展开

被引量:

11

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

imperial college london

引用走势

2014
被引量:8

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用