In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the maillard reaction.

来自 NCBI

阅读量:

121

摘要:

The formation of acrylamide was studied in low-moisture Maillard model systems (180 degrees C, 5 min) based on asparagine, reducing sugars, Maillard intermediates, and sugar degradation products. We show evidence that certain glycoconjugates play a major role in acrylamide formation. The N-glycosyl of asparagine generated about 2.4 mmol/mol acrylamide, compared to 0.1-0.2 mmol/mol obtained with alpha-dicarbonyls and the Amadori compound of asparagine. 3-Hydroxypropanamide, the Strecker alcohol of asparagine, generated only low amounts of acrylamide ( approximately 0.23 mmol/mol), while hydroxyacetone increased the acrylamide yields to more than 4 mmol/mol, indicating that alpha-hydroxy carbonyls are much more efficient than alpha-dicarbonyls in converting asparagine into acrylamide. The experimental results are consistent with the reaction mechanism based on (i) a Strecker type degradation of the Schiff base leading to azomethine ylides, followed by (ii) a beta-elimination reaction of the decarboxylated Amadori compound to afford acrylamide. The beta-position on both sides of the nitrogen atom is crucial. Rearrangement of the azomethine ylide to the decarboxylated Amadori compound is the key step, which is favored if the carbonyl moiety contains a hydroxyl group in beta-position to the nitrogen atom. The beta-elimination step in the amino acid moiety was demonstrated by reacting under low moisture conditions decarboxylated model Amadori compounds obtained by synthesis. The corresponding vinylogous compounds were only generated if a beta-proton was available, for example, styrene from the decarboxylated Amadori compound of phenylalanine. Therefore, it is suggested that this thermal pathway may be common to other amino acids, resulting under certain conditions in their respective vinylogous reaction products.

展开

DOI:

10.1021/jf0495486

被引量:

358

年份:

2004

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2008
被引量:39

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用