Boosting for tumor classification with gene expression data

来自 EBSCO

阅读量:

263

作者:

M Dettling

展开

摘要:

MOTIVATION: Microarray experiments generate large datasets with expression values for thousands of genes but not more than a few dozens of samples. Accurate supervised classification of tissue samples in such high-dimensional problems is difficult but often crucial for successful diagnosis and treatment. A promising way to meet this challenge is by using boosting in conjunction with decision trees. RESULTS: We demonstrate that the generic boosting algorithm needs some modification to become an accurate classifier in the context of gene expression data. In particular, we present a feature preselection method, a more robust boosting procedure and a new approach for multi-categorical problems. This allows for slight to drastic increase in performance and yields competitive results on several publicly available datasets. AVAILABILITY: Software for the modified boosting algorithms as well as for decision trees is available for free in R at http://stat.ethz.ch/~dettling/boosting.html.

展开

DOI:

10.1093/bioinformatics/bth447

被引量:

1236

年份:

2004

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

Bioinformatics
12/12/2004

引用走势

2010
被引量:128

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用