On low dimensional case in the fundamental asset pricing theorem with transaction costs

阅读量:

39

作者:

GrigorievG Pavel

展开

摘要:

The well-known Harrison–Plisse theorem claims that in the classical discrete time model of the financial market with finite Ω there is no arbitrage iff there exists an equivalent martingale measure. The famous Dalang–Morton–Willinger theorem extends this result for an arbitrary Ω. Kabanov and Stricker [KS01] generalized the Harrison–Pliska theorem for the case of the market with proportional transaction costs. Nevertheless the corresponding extension of the Kabanov and Stricker result to the case of non-finite Ω fails, the corresponding counter-example with 4 assets was constructed by Schachermayer [S04]. The main result of this paper is that in the special case of 2 assets the Kabanov and Stricker theorem can be extended for an arbitrary Ω. This is quite a surprising result since the corresponding cone of hedgeable claims T is not necessarily closed.

展开

DOI:

10.1524/stnd.2005.23.1.33

被引量:

39

年份:

2005

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2012
被引量:7

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用