Scattering of electromagnetic waves from a slightly random surface—reciprocal theorem, cross-polarization and backscattering enhancement

阅读量:

46

作者:

H OguraT KawanishiN TakahashiZL Wang§

展开

摘要:

The present paper deals with the electromagnetic (EM) scattering from a perfectly conductive, random surface by means of the stochastic functional approach and aims to study the backscattering enhancement associated with co-polarized and cross-polarized scattering. The treatment is based on the stochastic functional theory where the random EM field is represented in terms of a Wiener-Hermite functional of the homogeneous Gaussian random surface. To obtain more precise solutions than the previous works (Nakayama J et al 1981 Radio Sci. 16 831-53), we first establish the reciprocal theorem for vector Wiener kernels which describe the stochastic functional representation of the EM field and, using this, we derive the reciprocal relations for the co-polarized and cross-polarized scattering distribution relative to TE and TM polarizations of incident wave. Solutions for the vector Wiener kernels up to the second are obtained so precisely as to satisfy the reciprocal relations and are expressed in terms of generating matrices, so that complex EM scattering processes described by the vector Wiener kernels are given dear physical interpretations. Compact operator representations are introduced to reformulate the hierarchical kernel equations, the mass operator equation and higher-order kernel solutions. It is shown that the second vector Wiener kernel physically describes a dressed double-scattering process, similar to the scalar theory (Ogura H and Takahashi N 1995 Waves Random Media 5 223-42), and that the dressed double scattering, which involves anomalous scattering in the intermediate scattering processes, creates the backscattering enhancement in both co- and cross-polarized scattering for both TE and TM wave incidence.

展开

DOI:

10.1088/0959-7174/5/4/006

被引量:

35

年份:

1995

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用