Monitoring the physiological status in bioprocesses on the cellular level.
摘要:
The trend in bioprocess monitoring and control is towards strategies which are based on the physiological status of the organism in the bioprocess. This requires that the measured process variables should be biologically meaningful in order to apply them in physiologically based control strategies. The on-line monitoring equipment available today mostly derives information on the physiological status indirectly, from external variables outside the cells. The complementary approach reviewed here is to analyse the microbial cells directly, in order to obtain information on the internal variables inside the cells. This overview covers methods for analysis of whole cells (as a population or as a single cell), for groups of cellular components, and for specific compounds which serve as markers for a certain physiological status. Physico-chemical separation methods (chromatography, electrophoresis) and reactive analysis can be used to analyse elemental and macromolecular composition of cells. Spectroscopic methods (mass, dielectric, nuclear magnetic, infrared, and Raman) have only recently been applied to such complex multicomponent mixtures such as microbial cells. Spectroscopy and chemical separation methods produce large amounts of data, which can often be used in the best way by applying chemometrics. Some of the methods can yield information not just on the average of the microbial cell population, but also on the distribution of sub-populations. The suitability of the methods for on-line coupling to the bioprocess is discussed. Others not suitable for on-line coupling can be established in routine off-line analysis procedures. The information gained by the methods discussed can mainly be used to establish better knowledge of the basis for monitoring and control strategies. Some are also applicable in real-time monitoring and control.
展开
关键词:
Macromolecular compounds Marker molecules Chemical patterns Infrared spectroscopy Raman spectroscopy
DOI:
10.1007/3-540-48773-5_6
被引量:
年份:
1999
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!