MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1

来自 EBSCO

阅读量:

222

作者:

L PanL YanY BingG WangX YouX ZhaoS RossY QinJ Sun

展开

摘要:

Aberrant vascular smooth muscle cell (VSMC) proliferation and migration contribute significantly to the development of vascular pathologies, such as atherosclerosis and restenosis. MicroRNAs have recently emerged as critical modulators in cellular processes and the purpose of this study is to identify novel miRNA regulators implicated in human aortic VSMC proliferation and migration.To identify miRNAs that are differentially expressed in human VSMCs, we performed miRNA microarray analysis in human aortic smooth muscle cells (SMCs) at different time points after platelet-derived growth factor (PDGF) stimulation. Here, we identified microRNA-638 (miR-638) as a transcript that was one of the most significantly down-regulated in human VSMCs after PDGF stimulation. Furthermore, we confirmed, by Quantitative RTPCR, that miR-638 is highly expressed in human VSMCs, and its expression is markedly down-regulated in a dose- and time-dependent manner upon PDGF treatment. Consistent with a critical role in SMC proliferation, we found that miR-638 expression was significantly up-regulated in human VSMCs cultured in differentiation medium, a condition that inhibits SMC proliferation. Furthermore, we identified the orphan nuclear receptor NOR1 as a downstream target gene product of miR-638 and down-regulation of NOR1 is critical for miR-638-mediated inhibitory effects on PDGF-induced cyclin D1 expression, cell proliferation, and migration in human aortic SMCs.These results indicate that miR-638 is a key molecule in regulating human VSMC proliferation and migration by targeting the NOR1/cyclin D pathway and suggest that specific modulation of miR-638 in human VSMCs may represent an attractive approach for the treatment of proliferative vascular diseases.

展开

DOI:

10.1093/cvr/cvt082

被引量:

167

年份:

2013

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2015
被引量:38

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用