Replication-defective chimeric helper proviruses and factors affecting generation of competent virus: expression of Moloney murine leukemia virus structural genes via the metallothionein promoter.

阅读量:

25

作者:

RA BosselmanRY HsuJ BruszewskiSB HuF MartinM Nicolson

展开

摘要:

Two chimeric helper proviruses were derived from the provirus of the ecotropic Moloney murine leukemia virus by replacing the 5'long terminal repeat and adjacent proviral sequences with the mouse metallothionein I promoter. One of these chimeric proviruses was designed to express the gag-pol genes of the virus, whereas the other was designed to express only the env gene. When transfected into NIH 3T3 cells, these helper proviruses failed to generate competent virus but did express Zn2+-inducible trans-acting viral functions needed to assemble infectious vectors. One helper cell line (clone 32) supported vector assembly at levels comparable to those supported by the Psi-2 and PA317 cell lines transfected with the same vector. Defective proviruses which carry the neomycin phosphotransferase gene and which lack overlapping sequence homology with the 5' end of the chimeric helper proviruses could be transfected into the helper cell line without generation of replication-competent virus. Mass cultures of transfected helper cells produced titers of about 10(4) G418r CFU/ml, whereas individual clones produced titers between 0 and 2.6 X 10(4) CFU/ml. In contrast, defective proviruses which share homologous overlapping viral sequences with the 5' end of the chimeric helper proviruses readily generated infectious virus when transfected into the helper cell line. The deletion of multiple cis-acting functions from the helper provirus and elimination of sequence homology overlapping at the 5' ends of helper and vector proviruses both contribute to the increased genetic stability of this system.

展开

DOI:

10.1128/MCB.7.5.1797

被引量:

146

年份:

1987

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

1990
被引量:12

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用