Brain-derived neurotrophic factor (BDNF) has proliferative effects on neural stem cells through the truncated TRK-B receptor, MAP kinase, AKT, and STAT-3 signaling pathways.

阅读量:

60

摘要:

Neurospheres can be generated from the mouse fetal forebrain by exposing multipotent neural stem cells (NSCs) to epidermal growth factor (EGF). In the presence of EGF, NSCs can proliferate continuously while retaining the potential to differentiate into neurons, astrocytes and oligodendrocytes. We examined the expression pattern of the neurotrophin (NT) receptors tropomysin-related kinase (TRK)-A, TRK-B, TRK-C and p75 neurotrophin receptor (p75NTR) in NSCs and the corresponding lineage cells. Furthermore, we analyzed the action of the NT Brain-Derived Neurotrophic Factor (BDNF) on NSCs' behavior. The effects of BDNF on NSC proliferation and differentiation were examined together with the signaling pathways by which BDNF receptors transduce signaling effects. We found that all the known NT receptors, including the truncated isoforms of TRK-B (t-TRK-B) and TRK-C (t-TRK-C), were expressed by Nestin-positive cells within the neurosphere. Proliferation was enhanced in Nestin-positive and BrdU-positive cells in the presence of BDNF. In particular, we show that t-TRK-B was abundantly expressed in NSCs and the corresponding differentiated glia cells while full length TRK-B (fl-TRK-B) was expressed in fully differentiated post-mitotic neurons such as the neuronal cells of the newborn mouse cortex, suggesting that BDNF may exert its proliferative effects on NSCs through the t-TRK-B receptor. Finally, we analyzed the cell fates of NSCs differentiated with BDNF in the absence of EGF and we demonstrate that BDNF stimulated the formation of differentiated cell types in different proportions through the MAP kinase, AKT and STAT-3 signaling pathways. Thus, the in-vivo regulation of neurogenesis may be mediated by the summation of signals from the BDNF receptors, in particular the t-TRK-B receptor, regulating physiological fates as diverse as normal neural replacement, excessive neural loss, or tumor development.

展开

DOI:

10.2174/156720209787466028

被引量:

191

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

引用走势

2012
被引量:43

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用