Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells.

阅读量:

100

作者:

HS HundalT RamlalR ReyesLA LeiterA Klip

展开

摘要:

The effects of the oral hypoglycemic drug metformin on glucose and amino acid transporter activity and subcellular localization of GLUT1 and GLUT4 glucose transporters were tested in cultured L6 myotubes. In muscle cells preexposed to maximal doses of metformin (2 mM, for 16 h), 2-deoxyglucose uptake was stimulated by over 2-fold from 5.9 +/- 0.3 to 13.3 +/- 0.5 pmol/min.mg protein. Uptake of the nonmetabolizable amino acid analog methylaminoisobutyrate was unaffected by treatment with the drug under identical conditions. Extracellular calcium was required to preserve the full response to the biguanide. Exposure of muscle cells to insulin in the presence of metformin resulted in further activation of 2-deoxyglucose transport. The latter effect was additive to the maximum effect of metformin, suggesting that the biguanide stimulates hexose uptake into muscle cells by an insulin-independent mechanism. Glucose transporter number quantified by performing studies of D-glucose-protectable binding of cytochalasin-B in plasma membranes (PM) and internal membranes (IM) prepared from L6 myotubes revealed that a 16-h treatment with 800 microM metformin significantly elevated glucose transporter number in the PM (by 47%), with an equivalent decrement in glucose transporter number (47%) in the IM. Western blot analysis using antisera reactive with the GLUT1 and GLUT4 isoforms of glucose transporters showed that metformin caused a reduction in GLUT1 content in the IM fraction and a concomitant increase in the PM. Unlike insulin, metformin treatment had no effect on the subcellular distribution of GLUT4. We propose that the molecular basis of metformin action in skeletal muscle involves the subcellular redistribution of GLUT1 proteins from an intracellular compartment to the plasma membrane. Such a recruitment process may form an integral part of the mechanism by which the drug stimulates glucose uptake (and utilization) in skeletal muscle and facilitates lowering of blood glucose in the management of type II diabetes.

展开

DOI:

10.1210/endo.131.3.1505458

被引量:

1001

年份:

1992

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

Endocrinology
1992/09

引用走势

2010
被引量:69

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用