Synthesis and enzymatic testing of reversible terminators for sequencing-by-synthesis (SBS)

作者:

AC Keller

展开

摘要:

Based on the commonly used and well-established state-of-the-art DNA sequencing method, i. e. Sanger sequencing, the major target of future research is to develop a fast, cost-effective and gelelectrophoresis-free sequencing method. The aim of the new sequencing technologies is to detect DNA mutations faster and more accurate in order to develop individual therapies for patients (personalized medicine). For this purpose, a lot of novel sequencing techniques like pyrosequencing, mass-spectrometry-assisted sequencing, sequencing by hybridization etc. have been put into practice and already led to commercialized sequencers. The sequencing technology we were mostly interested in is the so-called sequencing-by-synthesis method (SBS). This PhD thesis covers the synthesis of modified nucleosides – the so-called reversible terminators – and their evaluation as reversible terminators. These 3′-modified and dye-labeled nucleotides are incorporated by the polymerase into the DNA-template, then the DNA-synthesis is stopped. After detection of the fluorescent signal, the reversible terminator has to be cleavable in a way (i. e. the polymerase-blocking modification) that the DNA-synthesis can continue. As a result of the polymerase-acceptance tests that have been carried out with the two triphosphates cyanoethoxymethyl(CEM)-dTTP and cyanoethyl(CE)-dTTP as substrates it became clear that the latter one was better incorporated than the first one. Based on this knowledge all four key compounds for the whole reversible terminators possessing the cyanoethyl (CE) group where synthesized within this PhD thesis. Additionally to the synthesis of the modified key compounds, the cleavability of the cyanoethyl function had to be evaluated which is an essential requirement of a reversible terminator for SBS. For addressing this issue, three different CE- and CEM modified monophosphates were created. For each of these three monophosphates an individual synthetic strategy has been developed within this PhD work, each of these strategies and subsequent phosphorylation led to the desired modification. These previously unknown model compounds mimicking the solubility of short oligonucleotides were employed the for qualitative cleavage experiments after their purification and spectroscopical characterization. With these three monophosphates suitable cleavage conditions for a quantitative removal of the CE and the CEM group were examined. In case of the CE function we selectively improved the cleavage conditions while varying the solvent, the reaction temperature as well as the amount of cleaving agent used, in order to make the conditions applicable for an SBS experiment. Due to the fact that the CE function was the most important modification for our SBS experiment, we could even optimize the cleavage efficiency by employing co-solvents like DMSO or DMF. An additional cleavage experiment was carried out by using a short CE-modified oligomer which led to further results that were comparable to the ones obtained from the cleavage experiments of the monomers. One big difference is the required amount of TBAF as cleaving agent for the quantitative removal of the CE-modification from the oligomer. In this case, 7500 equivalents of TBAF are needed for complete CE cleavage at 45 °C compared to the amount of 40 to 80 equivalents TBAF for the monomer (monophosphate). As a conclusion of this result we assume that the amount of cleaving agent and the solubility of the oligomer plays an important role in the CE cleavage efficiency. This assumption was already supported by Saneyoshi et al. who demonstrated for CE-modified RNA oligonucleotides that the CE-cleavage rate is strongly lowered with the increasing of the oligomer length. Thus we could demonstrate that the CE function is quantitatively removable from an oligomer without destroying it. With these results in hands we could prove that the CEM and the CE group are quantitatively cleavable and therefore applicable as blocking groups for reversible terminators. The conditions for the CE cleavage are used f

展开

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用