The effects of low dose ketamine on sensory gating, neuroendocrine secretion and behavior in healthy human subjects

来自 EBSCO

阅读量:

38

作者:

BNMV BerckelB OranjeJMV ReeMN VerbatenRS Kahn

展开

摘要:

Recently, much interest has been given to the role of glutamatergic N -methyl- D -aspartate receptors (NMDA) in sensory gating, such as prepulse inhibition (PPI) and reduction of the P50 evoked response potential (ERP). Currently, mainly animal data are available describing the role of NMDA receptors in these stimulus evaluation processes. Human data are virtually lacking and are potentially important, for instance for the understanding of sensory gating deficits observed in schizophrenia. Therefore, the effects of the NMDA antagonist ketamine, in a dose of 0.3mg/kg IV, on concurrent assessment of PPI and P50 reduction was studied in 18 healthy male volunteers. Ketamine was administered in a pseudo-steady state model with a subacute loading dose. In addition, the effects of ketamine on behavior, vital signs, homovanillic acid (HVA) plasma levels and secretion of cortisol and luteinizing hormone (LH)were also determined. Ketamine did not significantly alter PPI or the reduction of the P50 ERP. A small but significant increase in Brief Psychiatric Rating Scale (BPRS) total scores and BPRS composite scores "thinking disorder" and "withdrawal/retardation" was observed. Several subjects experienced visual perceptional alterations, but complex hallucinations did not occur. Ketamine induced mild analgesia and coordination problems. In addition, ketamine induced a marked rise in cortisol secretion, while LH secretion was not affected. Finally, systolic and diastolic, blood pressure and heart rate increased during ketamine infusion. Although in humans NMDA receptors may not be involved in the regulation of PPI and P50 reduction, the most likely explanation for the lack of effect of ketamine on these sensory gating paradigms is the dose used in this experiment. However, using a higher dose is hampered by the aspecificity of racemic ketamine. Future studies should use the enantiomer S -ketamine, which is more specific to NMDA receptors, to evaluate the involvement of NMDA receptors in these neurophysiological processes further.

展开

DOI:

10.1007/s002130050620

被引量:

215

年份:

1998

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2003
被引量:20

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用