Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies

阅读量:

138

作者:

MK DahriMRR KoohLBL Lim

展开

摘要:

Batch adsorption experiment of malachite green (MG) was studied with walnut shell (WS). Adsorption of MG onto WS was confirmed by FTIR analysis. Particle size, dosage, effect of dye concentration, pH, temperature and ionic strength were investigated. The optimized conditions for adsorption process in this study was carried out using WS of dosage 0.03g/20mL dye, at room temperature, ambient pH and agitation rate of 250rpm for 2h. The kinetics of the adsorption process was studied using four models: Lagergren 1st order, pseudo 2nd order, Weber–Morris intraparticle diffusion and the Boyd models. Kinetics data is best fitted with pseudo 2nd order. Weber–Morris model showed that intraparticle diffusion may be present, but is not the rate-limiting step while Boyd model suggested that film diffusion may be the controlling mechanism. Four isotherm models namely the Langmuir, Freundlich, Redlich–Peterson and Sips models were used for describing the adsorption process. The inclusion of non-linear isotherm models together with four error functions (ARE, EABS, χ2 and MSPD) suggested the Langmuir model best described the adsorption process. The Langmuir isotherm predicted the maximum monolayer adsorption capacity of 90.8mgg1. Thermodynamic studies showed that adsorption system is spontaneous and endothermic in nature. Regeneration of WS was investigated using three different solvent solutions and the results showed 0.1M NaOH was able to regenerate and improve the adsorption capability of WS. Based on all the data in this study, WS is a potential low-cost material for the removal of MG.

展开

DOI:

10.1016/j.jece.2014.07.008

被引量:

103

年份:

2014

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用