The mitochondrial death/life regulator in apoptosis and necrosis.

来自 NCBI

阅读量:

169

作者:

G KroemerB DallaportaM Resche-Rigon

展开

摘要:

Both physiological cell death (apoptosis) and, in some cases, accidental cell death (necrosis) involve a two-step process. At a first level, numerous physiological and some pathological stimuli trigger an increase in mitochondrial membrane permeability. The mitochondria release apoptogenic factors through the outer membrane and dissipate the electrochemical gradient of the inner membrane. Mitochondrial permeability transition (PT) involves a dynamic multiprotein complex formed in the contact site between the inner and outer mitochondrial membranes. The PT complex can function as a sensor for stress and damage, as well as for certain signals connected to receptors. Inhibition of PT by pharmacological intervention on mitochondrial structures or mitochondrial expression of the apoptosis-inhibitory oncoprotein Bcl-2 prevents cell death, suggesting that PT is a rate-limiting event of the death process. At a second level, the consequences of mitochondrial dysfunction (collapse of the mitochondrial inner transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins) entails a bioenergetic catastrophe culminating in the disruption of plasma membrane integrity (necrosis) and/or the activation of specific apoptogenic proteases (caspases) by mitochondrial proteins that leak into the cytosol (cytochrome c, apoptosis-inducing factor) with secondary endonuclease activation (apoptosis). The relative rate of these two processes (bioenergetic catastrophe versus protease and endonuclease activation) determines whether a cell will undergo primary necrosis or apoptosis. The acquisition of the biochemical and ultrastructural features of apoptosis critically relies on the liberation of apoptogenic proteases or protease activators from mitochondria. The fact that mitochondrial events control cell death has major implications for the development of cytoprotective and cytotoxic drugs.

展开

DOI:

10.1146/annurev.physiol.60.1.619

被引量:

4563

年份:

1998

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用