CMOS Circuit Speed and Buffer Optimization

阅读量:

97

作者:

N HedenstiernaKjell O. Jeppson

展开

摘要:

An improved timing model for CMOS combinational logic is presented. The model is based on an analytical solution for the CMOS inverter output response to an input ramp. This model yields a better understanding of the switching behavior of the CMOS inverter than the step-response model by considering the slope of the input waveform. Essentially, the propagation delay is shown to be the sum of the step-response delay and an input dependent delay that may account for as much as 50-100 percent of the total delay. The matching between the ramp input and the characteristic input waveforms is shown to be easily performed for excellent agreement in output response and propagation delay. Even though the short-circuit current is neglected, its influence is shown to be small and may be corrected. As an example, the timing model is used to optimize CMOS output buffers for minimum delay. If the intrinsic output load capacitance is included in the model, the optimum tapering factor is shown to be not e but a value in the range 3-5 depending on process parameters and design style. Also, due to the input dependence of the propagation delay, the last inverter stage in the buffer should have a larger tapering factor than the other stages for minimum delay.

展开

DOI:

10.1109/TCAD.1987.1270271

被引量:

709

年份:

1987

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用