Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area.

摘要:

Due to the fragile pressure gradients present in the xylem and phloem, methods to study sap flow must be minimally invasive. Magnetic resonance imaging (MRI) meets this condition. A dedicated MRI method to study sap flow has been applied to quantify long-distance xylem flow and hydraulics in an intact cucumber (Cucumis sativus) plant. The accuracy of this MRI method to quantify sap flow and effective flow-conducting area is demonstrated by measuring the flow characteristics of the water in a virtual slice through the stem and comparing the results with water uptake data and microscopy. The in-plane image resolution of 120 × 120 micrometers was high enough to distinguish large individual xylem vessels. Cooling the roots of the plant severely inhibited water uptake by the roots and increased the hydraulic resistance of the plant stem. This increase is at least partially due to the formation of embolisms in the xylem vessels. Refilling the larger vessels seems to be a lengthy process. Refilling started in the night after root cooling and continued while neighboring vessels at a distance of not more than 0.4 mm transported an equal amount of water as before root cooling. Relative differences in volume flow in different vascular bundles suggest differences in xylem tension for different vascular bundles. The amount of data and detail that are presented for this single plant demonstrates new possibilities for using MRI in studying the dynamics of long-distance transport in plants.

展开

DOI:

10.1104/pp.106.089250

被引量:

205

年份:

2007

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用