Regularity of solutions of a degenerate elliptic variational problem
摘要:
We prove regularity of minimizers of the functional F(s,{\mathbf{ }}u) = \int\limits_\Omega {\left( {\kappa \left| {abla s} ight|^2 + s^2 \left| {abla u} ight|^2 + \Psi (s)} ight)} {\mathbf{ }}dx F(s,{\mathbf{ }}u) = \int\limits_\Omega {\left( {\kappa \left| {abla s} ight|^2 + s^2 \left| {abla u} ight|^2 + \Psi (s)} ight)} {\mathbf{ }}dx recently suggested by Ericksen [10] for the statics of nematic liquid crystals. We show that, given locally minimizing pairs ( s, u ), s has a continuous representative, and s, u are smooth outside the set { s =0}. The proof relies upon higher integrability estimates, monotonicity, and decay lemmas.
展开
DOI:
10.1007/bf02568766
被引量:
年份:
1990
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!