Improving the selectivity for the synthesis of two renewable platform chemicals via olefin metathesis

来自 EBSCO

阅读量:

14

作者:

GuyBertrandDjigouéandMichaelR A.Meier

展开

摘要:

The self-metathesis of methyl 10-undecenoate as well as its cross-metathesis with methyl acrylate was investigated in detail by a systematic variation of the reaction conditions. Unsaturated α,ω-diesters with a chain length of 20 and 12 carbon atoms were thus obtained, respectively. Four different metathesis catalysts were investigated under solvent-free conditions at catalyst loadings ranging from 0.05 mol% to 1 mol% and at temperatures ranging from 30 °C to 90 °C. In the case of the self-metathesis reactions quantitative conversions were obtained with all catalysts, but the second generation metathesis catalysts revealed high amounts of olefin isomerization side reactions at higher temperatures. Using a small quantity of the hydrogen acceptor 1,4-benzoquinone, the isomerization process was almost completely suppressed. Thus, the second generation catalysts allowed for high conversions at very low catalyst loadings. For the cross-metathesis reaction, an interesting temperature and catalyst loading dependent selectivity was observed with the second generation catalysts. Moreover, due to these optimizations, we were able to run these cross-metathesis reactions with a 1:1 ratio of the reactants and low catalysts loadings. This is an improvement over described literature procedures. Thus, we report on the detailed investigation of the described self- and cross-metathesis reactions leading to practical and optimized reaction conditions for the synthesis of unsaturated α,ω-diesters monomers from renewable raw materials in an efficient catalytic manner.

展开

DOI:

10.1016/j.apcata.2009.08.025

被引量:

17

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2012
被引量:4

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用