Unsupported Transition Metal Sulfide Catalysts: 100 Years of Science and Application

来自 Elsevier

阅读量:

136

作者:

RR ChianelliG BerhaultB Torres

展开

摘要:

For more than 100 years the transition metal sulfides (TMS) have been mainstays of hydro-processing fuels and upgrading bitumen and coal. Every refinery in the world uses them everyday to remove sulfur and other pollutants from transportation liquid fuels. As environmental regulations increase the need for improved active and selective TMS will continue to grow. This need can only be met through increased understanding and research on the next generation of TMS catalysts. In this report we outline the growth in fundamental studies of structure/function in the TMS and suggest are where improved understanding is needed. An understanding of the fundamental properties that lead to both the activity of the simple binary sulfides and the mechanism by which two metals (Co+Mo) acted together to enhance activity (promotion) has been developed. Initial efforts focused on supported commercial catalysts with limited success. In the early 1980s the periodic trends of TMS catalysts on unsupported catalysts were discovered and these results formed the foundation for further basic understanding of the key properties that led to catalytic activity. These results have been extended over the years to include supported catalysts and many petroleum based substrates. Progress has been made by combining synthetic, experimental and theoretical techniques. Theoretical studies support the fact that the d electrons in the frontier orbitals of the catalysts were key in determining catalysis at the surface. The triumph of this approach was that it unified the promoted TMS systems with the binary TMS and provided a common rational for the activity of both. Constant progress since then has been achieved through the application of density functional theory (DFT) narrowing the gap between instinct and a formal description of catalyst structure/function made by combining synthetic, experimental and theoretical techniques. Theoretical studies support the fact that the d electrons in the frontier orbitals of the catalysts were key in determining catalysis at the surface. The triumph of this approach was that it unified the promoted TMS systems with the binary TMS and provided a common rational for the activity of both. Constant progress since then has been achieved through the application of DFT narrowing the gap between instinct and a formal description of catalyst structure/function. It is crucial to remember that for real understanding to develop we must study the catalytically stabilized materials and not materials that are changing under catalytic conditions. In the case of the TMS this means that we must study materials like MoS2xCxand RuS2xCx. It has been demonstrated that "surface carbides" are the catalytically stabilized state under hydro-treating conditions. The original relation between the d electrons and later DFT calculations all point to the importance of these electrons in the catalytic reaction. However, more work is needed to define the relation between these electrons and the stabilized carbide surfaces before detailed active site structures can be developed with confidence. In addition the presence of Co metal in active hydro-processing catalysts stabilized for four years in a commercial reactor, calls in to question current theories of the structure of promoted catalysts.

展开

DOI:

10.1016/j.cattod.2008.09.041

被引量:

144

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2013
被引量:35

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用