A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans.
摘要:
Aberrant ion channel activity plays a causative role in several human disorders. Inappropriately regulated channel activity also appears to be the basis for neurodegeneration induced by dominant mutations of Caenorhabditis elegans mec-4 (mec-4(d)), a member of the degenerin gene family postulated to encode a subunit of a mechanosensory channel. The degenerin gene family has been defined by two C. elegans genes, mec-4 and deg-1, which can mutate to gain-of-function alleles that induce degeneration of specific groups of neurons. A related mammalian gene, rat alpha-rENaC, induces an amiloride-sensitive Na+ current when introduced to Xenopus oocytes, strongly suggesting that degenerin genes encode ion channel proteins. Deduced amino-acid sequences of the degenerins include two predicted membrane-spanning domains. Here we show that conserved amino acids within the second membrane-spanning domain (MSDII) are critical for MEC-4 activity and that specific substitutions within MSDII, whether encoded in cis or in trans to a mec-4(d) mutation, block or delay the onset of degeneration. Remarkably, MSDII from two other family members, C. elegans deg-1 and rat alpha-rENaC, can functionally substitute for MEC-4 MSDII in chimaeric proteins. Our results support a structural model for a mechanosensory channels in which multiple MEC-4 subunits are oriented such that MSDII lines the channel pore, and a neurodegeneration model in which aberrant ion flow through this channel is a key event.
展开
关键词:
Animals Animals, Genetically Modified Rats Mechanoreceptors Caenorhabditis elegans Nerve Degeneration DNA Primers Amino Acids Helminth Proteins Caenorhabditis elegans Proteins
DOI:
10.1038/367470a0
被引量:
年份:
1994































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!