Effect of velocity ratio on coherent-structure dynamics in turbulent free shear layers

来自 APS

阅读量:

26

作者:

S SuryanarayananR Narasimha

展开

摘要:

The relevance of the vortex-gas model to the large scale dynamics of temporally evolving turbulent free shear layers has been established by extensive simulations (Phys. Rev. E 89, 013009 (2014)). The effects of velocity ratio (r =U/U) on shear layer dynamics are revealed by spatially evolving vortex-gas shear-layer simulations using a computational model based on Basu et al. (Appl. Math. Modelling 19, (1995)), but with a crucial improvement that ensures conservation of global circulation. The simulations show that the initial conditions and downstream boundaries can significantly affect the flow over substantial part of the domain, but the equilibrium spread rate is a universal function of r, and is within the experimental scatter. The spread in the r = 0 limit is higher than Galilean-transformed temporal value. The present 2D simulations at r = 0 show continuous growth of structures, while merger-dominated evolution is observed for r = 0 . 23 (and higher). These two mechanisms were observed across the same two values of r in the experiments of D'Ovidio & Coats (J. Fluid Mech. 737, 2013), but the continuous growth was instead attributed to mixing-transition and 3D. The 2D mechanisms responsible for the observed continuous growth of structures are analyzed in detail.

展开

会议时间:

11/2014

被引量:

1

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源会议

Aps Meeting
11/2014

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用