Initial reference models in local earthquake tomography

摘要:

The inverse problem of three-dimensional (3-D) local earthquake tomography is formulated as a linear approximation to a nonlinear function. Thus the solutions obtained and the reliability estimates depend on the initial reference model. Inappropriate models may result in artifacts of significant amplitude. Here, we advocate the application of the same inversion formalism to determine hypocenters and one-dimensional (1-D) velocity model parameters, including station corrections, as the first step in the 3-D modeling process. We call the resulting velocity model the minimum 1-D model. For test purposes, a synthetic data set based on the velocity structure of the San Andreas fault zone in central California was constructed. Two sets of 3-D tomographic P velocity results were calculated with identical travel time data and identical inversion parameters. One used an initial 1-D model selected from a priori knowledge of average crustal velocities, and the other used the minimum 1-D model. Where the data well resolve the structure, the 3-D image obtained with the minimum 1-D model is much closer to the true model than the one obtained with the a priori reference model. In zones of poor resolution, there are fewer artifacts in the 3-D image based on the minimum 1-D model. Although major characteristics of the 3-D velocity structure are present in both images, proper interpretation of the results obtained with the a priori 1-D model is seriously compromised by artifacts that distort the image and that go undetected by either resolution or covariance diagnostics.

展开

DOI:

10.1029/93JB03138

被引量:

633

年份:

1994

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2012
被引量:54

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用