ER Stress Activating ATF4/CHOP-TNF-α Signaling Pathway Contributes to Alcohol-Induced Disruption of Osteogenic Lineage of Multipotential Mesenchymal Stem Cell

来自 Karger

阅读量:

201

作者:

Y ChenH GaoQ YinL ChenP DongX ZhangJ Kang

展开

摘要:

Background/Aims: Studies have provided substantial evidence that osteoblasts and adipocytes share common progenitor‒multipotential mesenchymal stem cells in bone marrow (BMSCs), and excessive alcohol consumption shifts away from osteogenic to adipogenic lineage. However, how exactly alcohol impairs osteogenesis is still incompletely understood. This study was designed to shed light on this issue. Methods: We treated primary BMSCs from human subjects with alcohol for 24 days. We measured changes of genes related to endoplasmic reticulum (ER) stress, adipogenic markers and osteogenic markers using quantitative real-time RT-PCR and Western blot analysis. We performed Oil red O staining and quantification of adipogenesis. We also conducted caspase 3 activity assay to assess BMSC apoptosis. Results: We showed here that chronic exposure of BMSCs to alcohol induced adipogenesis and disrupted osteogenesis as indicated by upregulation of adipogenic markers (PPARγ2 and aP2), downregulation of osteogenic markers (Osf2/Cbfa1), and accumulation of lipid droplets. Alcohol induced ER stress, as reflected by increased expression of glucose-regulated proteins GRP78 and GRP94, and by increased expression of transcription factors activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and enhanced caspase 3 activity. Additionally, ER stress also upregulated tumor necrosis factor-alpha (TNF-α). Simultaneous silencing of ATF4 and CHOP prevented upregulation of TNF-α. Knockdown of either ATF4 and CHOP or TNF-α by their siRNAs was able to reverse the ethanol-induced adipogenesis. Conclusion: Our data therefore revealed a role of ER stress and ATF4/CHOP in the ethanol-induced inhibition of osteogenesis, and activation of TNF-α signaling by ATF4/CHOP linking ER stress to adipogenic lineage in response to alcohol stimulation. This work should establish a new signaling pathway linking alcohol, ER stress, and TNF-α to loss of bone formation: Ethanol → ER stress↑↑↑ → ATF4 & CHOP↑↑↑ → TNF-α↑↑↑ → Osteoblasts↓↓↓.

展开

DOI:

10.1159/10.1159/000354476

被引量:

42

年份:

2013

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用