Locally Optimal Designs for Estimating Parameters

阅读量:

139

作者:

ChernoffHerman

展开

摘要:

It is desired to estimate $s$ parameters $heta_1, heta_2, \\\\cdots, heta_s.$ There is available a set of experiments which may be performed. The probability distribution of the data obtained from any of these experiments may depend on $heta_1, heta_2, \\\\cdots, heta_k, k \\\\geqq s.$ One is permitted to select a design consisting of $n$ of these experiments to be performed independently. The repetition of experiments is permitted in the design. We shall show that, under mild conditions, locally optimal designs for large $n$ may be approximated by selecting a certain set of $r \\\\leqq k + (k - 1) + \\\\cdots + (k - s + 1)$ of the experiments available and by repeating each of these $r$ experiments in certain specified proportions. Examples are given illustrating how this result simplifies considerably the problem of obtaining optimal designs. The criterion of optimality that is employed is one that involves the use of Fisher's information matrix. For the case where it is desired to estimate one of the $k$ parameters, this criterion corresponds to minimizing the variance of the asymptotic distribution of the maximum likelihood estimate of that parameter. The result of this paper constitutes a generalization of a result of Elfving [1]. As in Elfving's paper, the results extend to the case where the cost depends on the experiment and the amount of money to be allocated on experimentation is determined instead of the sample size.

展开

DOI:

10.1214/aoms/1177728915

被引量:

858

年份:

1953

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2014
被引量:71

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用