Trajectory Tracking Control Using Echo State Networks for the CoroBot's Arm

来自 Springer

阅读量:

23

作者:

CH ValenciaMMBR VellascoKT Figueiredo

展开

摘要:

Different neural network models have proven being useful for tracking purposes in robotic devices. However, some models have shown superior performances to others that generate a large computational cost. This is the case of recurrent neural networks, which due to the temporal relationship existing allows satisfactory answers. Furthermore, training used by traditional algorithms, require a relatively high convergence time for some applications, especially those that are on-line. Given this problematic, this paper suggests use Echo State Networks (ESN) to perform such tasks. Additionally, results are presented for two sets of predefined tests, which were used to validate control behavior of trajectories in a manipulator embedded in a mobile platform. The results presented are related to the planar control of the manipulator in a closed loop.

展开

DOI:

10.1007/978-3-319-05582-4_38

被引量:

2

年份:

2014

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2014
被引量:1

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用