Fracture faces of frozen membranes
摘要:
In 1961, the development of an improved freeze-etching (FE) procedure to prepare rapidly frozen biological cells or tissues for electron microscopy raised two important questions. How does a frozen cell membrane fracture? What do the extensive face views of the cell's membranes exposed by the fracture process of FE tell us about the overall structure of biological membranes? I discovered that all frozen membranes tend to split along weakly bonded lipid bilayers. Consequently, the fracture process exposes internal membrane faces rather than either of the membrane's two external surfaces. During etching, when ice is allowed to sublime after fracturing, limited regions of the actual membrane surfaces are revealed. Examination of the fractured faces and etched surfaces provided strong evidence that biological membranes are organized as lipid bilayers with some proteins on the surface and other proteins extending through the bilayer. Membrane splitting made it possible for electron microscopy to show the relative proportion of a membrane's area that exists in either of these two organizational modes.
展开
关键词:
DOI:
10.1091/mbc.E15-05-0287
被引量:
年份:
1966





















通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!