Building Timing Predictable Embedded Systems
摘要:
A large class of embedded systems is distinguished from general-purpose computing systems by the need to satisfy strict requirements on timing, often under constraints on available resources. Predictable system design is concerned with the challenge of building systems for which timing requirements can be guaranteed a priori. Perhaps paradoxically, this problem has become more difficult by the introduction of performance-enhancing architectural elements, such as caches, pipelines, and multithreading, which introduce a large degree of uncertainty and make guarantees harder to provide. The intention of this article is to summarize the current state of the art in research concerning how to build predictable yet performant systems. We suggest precise definitions for the concept of “predictability”, and present predictability concerns at different abstraction levels in embedded system design. First, we consider timing predictability of processor instruction sets. Thereafter, we consider how programming languages can be equipped with predictable timing semantics, covering both a language-based approach using the synchronous programming paradigm, as well as an environment that provides timing semantics for a mainstream programming language (in this case C). We present techniques for achieving timing predictability on multicores. Finally, we discuss how to handle predictability at the level of networked embedded systems where randomly occurring errors must be considered.
展开
关键词:
Design Performance Reliability Verification Embedded systems safety-critical systems predictability timing analysis resource sharing
DOI:
10.1145/2560033
被引量:
年份:
2014























































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!