Identifiability and exchangeability for direct and indirect effects.

阅读量:

323

作者:

RS Greenland

展开

摘要:

We consider the problem of separating the direct effects of an exposure from effects relayed through an intermediate variable (indirect effects). We show that adjustment for the intermediate variable, which is the most common method of estimating direct effects, can be biased. We also show that, even in a randomized crossover trial of exposure, direct and indirect effects cannot be separated without special assumptions; in other words, direct and indirect effects are not separately identifiable when only exposure is randomized. If the exposure and intermediate never interact to cause disease and if intermediate effects can be controlled, that is, blocked by a suitable intervention, then a trial randomizing both exposure and the intervention can separate direct from indirect effects. Nonetheless, the estimation must be carried out using the G-computation algorithm. Conventional adjustment methods remain biased. When exposure and the intermediate interact to cause disease, direct and indirect effects will not be separable even in a trial in which both the exposure and the intervention blocking intermediate effects are randomly assigned. Nonetheless, in such a trial, one can still estimate the fraction of exposure-induced disease that could be prevented by control of the intermediate. Even in the absence of an intervention blocking the intermediate effect, the fraction of exposure-induced disease that could be prevented by control of the intermediate can be estimated with the G-computation algorithm if data are obtained on additional confounding variables.

展开

DOI:

10.1097/00001648-199203000-00013

被引量:

1994

年份:

1992

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2013
被引量:184

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用