Scale-dependent predictability of DEM-based landform attributes for soil spatial variability in a coastal dune system

阅读量:

34

作者:

KimDaehyunZhengYanbing

展开

摘要:

Muchoil-landformodelingashownhathe predictabilityfopographic parameters derivedrom digital elevationodels (DEM)oroilpatial variability is influencedyheelectionf DEM's gridize.histudy investigatesoil-terrainelationships inoastal dunetultiple DEMesolutionso examine ifuchcale-dependence isbiquitous phenomenon even in low-reliefystems withelativelyomogeneousubstrates. Weollected 193oilamplesromheinduoastal dunefield in western Koreandnalyzed 11 physicalndhemicaloil properties.asedn principalomponentnalysis,ouroilttributes (K+, pH,otal P.nd nitrate)hateflect dominant pedogeomorphological processesnhe dune wereelecteds dependent variables inpatialegression. Predictors included vegetationypes, distanceromheoastline,ndevenerrain indices extractedrom various gridizesf DEM (5, 10, 20, 30, 40).esults demonstratedtrongcale-dependence inheodel prediction:patial patternsfheouroil variables wereest predictedy landform parameters extractedrom different DEMesolutions.pecifically, weoundhe lowestkaike's Informationriterionor K+, pH,otal P.nd nitratetcalesf 5, 20, 30,nd 40,espectively.esidualsf eachoilttributecquiredthesecaleslso possessedhe lowest degreefpatialutocorrelation identifiedyoran's I.hecale-dependent predictability inuroil-landscapeodeling implieshatine-scaleopographic information would notlwayseptimalornderstandingoilpatial variability.uture pedogeomorphologicalodelersherefore needoake intoccountheniquepatial extentndehaviorf individualoilttributeso determineptimalpatialesolutionsf DEM. We proposehatcale-dependentoil-terrainelationshipsaye widelypplicable notion inoil geomorphology, notnlyo variouserrestrialuggedillslopes wherehe notionaseen dominantly examinednd developed,utlsooystems with lowopographicuggednessndniformubstrateuchsoastal dunes

展开

DOI:

10.1016/j.geerma.2011.06.002

被引量:

27

年份:

2011

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用