Converting trypsin to chymotrypsin: structural determinants of S1' specificity

来自 ACS

阅读量:

53

作者:

T KurthD UllmannHD JakubkeL Hedstrom

展开

摘要:

Trypsin and chymotrypsin differ strikingly in substrate specificities despite great similarity in their primary and tertiary structures. This work analyzes the role of two surface loops, loop 40 and loop 60, as structural determinants of the specificity of the S1'-subsite in chymotrypsin and trypsin. Chymotrypsin prefers P1' Arg/Lys residues, while trypsin prefers hydrophobic P1' residues. We replaced loop 40 and loop 60 in trypsin with their chymotrypsin counterparts. These mutations do not affect the S1 specificity and catalytic activity of trypsin. The S1' specificity was analyzed by monitoring acyl-transfer reactions to 16 amino acid amides. The exchange of loop 40 does not affect the S1' specificity. In contrast, the replacement of loop 60 causes a loss of specificity for P1'-Met/Ile/Leu. Combining both mutations reconstitutes a chymotrypsin-like S1' specificity. The specificity for Arg-NH2 increases 3-fold while the preferences for Met-NH2 and Ile-NH2 decrease 4- and 8-fold, respectively. Therefore, P1'-Arg/Met discrimination changes by factor 12 and P1'-Arg/Ile discrimination changes by factor 24. Thus, loop 40 and loop 60 act synergistically to determine S1' specificity in trypsin and chymotrypsin.

展开

DOI:

10.1016/j.msea.2009.08.063

被引量:

712

年份:

1997

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2010
被引量:83

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用