Energies of curved metallic surfaces from the stabilized-jellium model

阅读量:

86

作者:

C FiolhaisJ Perdew

展开

摘要:

In the liquid-drop model, the total energy of a system is expanded as a sum of volume, surface, and curvature terms. We derive an expression for the curvature energy of a metal in terms of the electron-density profile for a planar surface, and show that the resulting values agree with the fits of calculated or measured total energies to the liquid-drop expansion. In particular, this expansion accurately describes the formation energies of microscopic voids (including monovacancies) in metals. In our calculations, the curvature energy is determined by the bulk density. It is nearly the same for restricted trial density profiles as for self-consistent Kohn-Sham profiles, for the fourth-order gradient expansion as for the exact kinetic energy, and for jellium as for stabilized jellium. We also report Kohn-Sham results for the surface energy and work function. The stabilized-jellium model, while retaining the simplicity and nonempirical character of jellium, gives a significantly more realistic description of the simple metals, especially those with high bulk densities

展开

DOI:

10.1103/PhysRevB.45.6207

被引量:

1448

年份:

1992

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

Physical Review B
1992年03月15日

引用走势

1998
被引量:289

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用